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ABSTRACT
The focus of this paper is to present a new methodology
for solving general nonlinear programs. We propose the
use of interior-point methodology, trust-region globalization
strategies, and conjugate gradient method to find a solution
to large scale problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—nonlinear pro-
gramming

General Terms
Algorithms, Theory

Keywords
Interior-point method, Newton’s method, trust region method,
and conjugate gradient

1. INTRODUCTION
We study the general nonlinear program in the form

minimize f(x)
subject to h(x) = 0

x ≥ 0,
(1)

where h(x) = (h1(x), . . . , hm(x))T and f, hi : IRn → IR,
i = 1, . . . , m (m ≤ n) are twice continuously differentiable
functions. The Lagrangian function associated with problem
(1) is

	 (x, y, z) = f(x) + h(x)T y − xT z,
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where y ∈ IRm and z ≥ 0 ∈ IRn are the Lagrange multipli-
ers associated with the equality and inequality constraints,
respectively.
For µ > 0, the perturbed Karush-Kuhn-Tucker (KKT) con-
ditions for problem (1) are

Fµ(x, y, z) ≡
0
@∇f(x) +∇h(x)y − z

h(x)
XZe − µe

1
A = 0, (2)

(x, z) > 0,

where X = diag(x), Z = diag(z), and e = (1, . . . , 1)T ∈ IRn.
The Newton’s method applied to (2) leads to the following
nonsymmetric and indefinite linear system0

@ ∇2
x	 ∇h(x) −I

∇h(x)T 0 0
Z 0 X

1
A

0
@∆x
∆y
∆z

1
A = −

0
@∇x	

h(x)
ec

1
A (3)

where ec = XZe − µe, ∇x	 = ∇f(x) + ∇h(x)y − z, and

∇2
x	 = ∇2f(x) +

mX
i=1

∇2hi(x)yi.

The interest in large scale applications has motivated the
use of inexact Newton steps for solving (3). Therefore we
propose to decouple this system in such a way that we can
take advantage of the structure of the problem, and allow
implementations for solving large scale problems.

2. QUADRATIC SUBPROBLEM
We derive a quadratic subproblem associated with the

perturbed KKT conditions which forms the central frame-
work for solving problem (1). Once ∆x is known, from the
third block of equations of (3), we have

∆z = −X−1(ec + Z∆x).

Now, substituting ∆z into system (3) we obtain a smaller
system of equations, known as the saddle point problem,„

Q AT

A 0

« „
∆x
∆y

«
= −

„
c

h(x)

«
(4)

where Q = ∇2
x	+X−1Z, A = ∇h(x)T , and c = ∇x	+X−1ec.

One advantage of this formulation is that we have improved
the chances of Q being positive definite on the nullspace
of A, especially far away from a solution of the problem,
even though ∇2

x	 may not be. This occurs because the term
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X−1Z is a positive diagonal matrix. It is well known that
if Q is positive definite and A is full rank, then ∆x ob-
tained from (4) is the unique global minimizer of the follow-
ing quadratic subproblem:

minimize 1
2
∆xT Q∆x + cT∆x

subject to A∆x + h(x) = 0
(5)

with Q, A, and c defined as in (4).
However, it is possible that Q may not be positive definite
on the nullspace of A and/or A is not full rank, and therefore
it is not possible to find an ∆x solution of (4). Usually this
is the case far away of an optimal solution. So, the purpose
is to present a global strategy that yields to find an ap-
proximate solution, and that the iterates coincides with the
Newton step associated to the problem close to an optimal
solution.

3. TRUST REGION SUBPROBLEM
In line with this purpose, we introduce the trust region

subproblem as a globalization strategy. In our case, we want
to improve even further the chances that the matrix Q be
positive definite on the nullspace of A and to allow the use
of the conjugate gradient algorithm for obtaining an ap-
proximate solution of ∆x. Therefore we propose to obtain
a solution or an approximate solution of (4) using a trust
region globalization strategy. The subproblem is given by

minimize 1
2
∆xT Q∆x + cT∆x

subject to A∆x + h(x) = 0
‖∆x‖ ≤ ∆,

(6)

where ∆ > 0 is the trust region radius.

Observation 1. A solution or an approximate solution
∆x of (6) can be expressed as a direct sum of one element
in the row space of A, ∆xp ∈ R(AT ), and the other one
in the nullspace of A, ∆xh ∈ N (A), because A is a linear
operator from IRn to IRm. That is

∆x = ∆xp +∆xh, (7)

where ∆xp and ∆xh are perpendicular. We call ∆xp and
∆xh the particular and homogeneous solutions of (6), re-
spectively. (See [4, 3])

To find these elements, we propose solving the following two
subproblems.

3.1 Particular Solution
The particular solution ∆xp is given by the following lin-

ear least squares subproblem

minimize ‖A∆xp + h(x)‖
subject to ‖∆xp‖ ≤ τ∆

(8)

where ∆xp ∈ R(AT ), and τ ∈ (0, 1).

3.2 Homogeneous Solution
Once ∆xp is known and assuming A∆xp +h(x) = 0, then

from (6) and (7) we obtain, after some algebraic operations,
the following subproblem

minimize 1
2
∆xT

h Q∆xh + (Q∆xp + c)T∆xh

subject to A∆xh = 0

|∆xh‖ ≤ p
∆2 − ‖∆xp‖2.

(9)

Now, let ∆xh = Pw for some w ∈ IRn, where P is the
projection ontoN (A). Then making the substitution of ∆xh

in (9), we obtain the following unconstrained trust region
subproblem

minimize 1
2
wT (PQP )w + (Q∆xp + c)T Pw

subject to ‖Pw‖ ≤ p
∆2 − ‖∆xp‖2.

(10)

We propose solving (10) using the conjugate gradient method
and Steihaug’s termination test.
After obtaining ∆xp from (8) and w from (10), we define an
inexact Newton direction (∆x,∆z) by

∆x = ∆xp + Pw and ∆z = −X−1(ec + Z∆x). (11)

4. GLOBALIZATION STRATEGY
We follow the same globalization philosophy presented by

[1, 2] which consists in treating the variable y as a parameter.
Then, only the variables x and z are taken into account in
our globalization strategy.
The direction (∆x,∆z) given by (11) is accepted if it allows
a sufficient decrease for the merit function introduced in [1,
2],

Mµ(x, z; y, ρ) = 	(x, y, z)+ρ (
1

2
‖h(x)‖2+xT z−µ

nX
i=1

ln(xizi))

for ρ sufficiently large.
The fundamental idea of our globalization strategy is to ap-
ply a trust region and inexact Newton’s method to the per-
turbed KKT conditions (2) for a fixed µ until we arrive to
a specified neighborhood that measures nearness of a cen-
tral region previously defined. We consider the notion of
quasicentral path, introduced in [1, 2], as a central region
to follow for obtaining an optimal solution of problem (1).
The quasicentral path, parameterized by µ > 0, is defined
as t he collection of points (x, z) ∈ IRn+n satisfying„

h(x)
XZe − µe

«
= 0, (x, z) > 0.

For a fixed µ > 0, we say that a point (x, z) > 0 ∈ IRn+n

is close enough to the quasicentral path if it satisfies the
following inequality:

‖h(x)‖2 + ‖W (XZe − µe)‖2 ≤ γµ

where W = (XZ)−1/2 and γ ∈ (0, 1).

5. CONCLUSIONS
We have described a new methodology for solving large

scale nonlinear programs using interior-point methods com-
bined with a trust region strategy and conjugate gradient
method. Our future work involves an implementation of
this methodology on a set of large scale problems.
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[1] M. Argáez. Exact and Inexact Newton Linesearch

Interior-Point Algorithms for Nonlinear Programming
Problems. PhD thesis, Rice University, Houston, TX,
1997.
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